skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Andrew L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Utilizing distributed renewable and energy storage resources via peer-to-peer (P2P) energy trading has long been touted as a solution to improve energy system’s resilience and sustainability. Consumers and prosumers (those who have energy generation resources), however, do not have expertise to engage in repeated P2P trading, and the zero-marginal costs of renewables present challenges in determining fair market prices. To address these issues, we propose a multi-agent reinforcement learning (MARL) framework to help automate consumers’ bidding and management of their solar PV and energy storage resources, under a specific P2P clearing mechanism that utilizes the so-called supply-demand ratio. In addition, we show how the MARL framework can integrate physical network constraints to realize decentralized voltage control, hence ensuring physical feasibility of the P2P energy trading and paving ways for real-world implementations. 
    more » « less
  2. null (Ed.)